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Abstract: 

One way to decrease variation in key production processes is by improved adjustments of their 
control inputs.  “Dynamic Optimization” does this and more: 

 It can be applied by an engineer/black-belt “by hand”; and can be integrated with 
DCS/SCADA systems for on-line automatic performance optimization even as conditions 
and objectives change. 

 It can simultaneously address multiple (measurable) objectives, such as several measures 
of variation, yields, production rates, product characteristics to be maximized/minimized 
such as strength and impurities, consumption, losses, safety, emissions. 

 It uses sequential modeling and optimization.  Given a set of objectives, adjustment of 
control inputs such as temperatures, pressures, flows, depth of cut, cycle times, etc. are 
optimized in usually 30-80 readjustments without requiring prior data or prior models.  A run 
with each adjustment is usually 0.25 to 2 hours for continuous processes, or the normal 
batch time.   

Typically in the last ten years, the bottom-line gains have been several $100K/year per 
application, a payback of a few months. 

Using this tool can increase the profitability impact of Six Sigma programs. 

Introduction 

Production process performance, including consistency, yield, production rate, product 
characteristics, costs, and other ancillary results, depend a lot on how the control inputs to the 
process are set or adjusted. 

Historically it has been proven that major improvements are available in many production 
processes by implementing better adjustments. 

This paper presents aspects of one technology to achieve better process adjustments, 
technically described as “Sequential Empirical Optimization”, and known as “Dynamic 
Optimization” in certain application areas.  One version of this technology is a tool marketed 

under the name of ULTRAMAX®. 

Scope of Dynamic Optimization 

These are the predominant patterns of thought and consequent technology that drive the 
ULTRAMAX solution to implement “Dynamic Optimization” (DO). 
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 2 

A. Applicability 

The main purpose of Dynamic Optimization is to improve the profitability contribution of a 
production process.  The pivotal focus is to achieve this through better adjustments or settings 
of the control inputs for a process that has already attained a state of reasonable statistical 
control. 

Profitability or other objectives can be defined with any quantifiable aspect of process 
performance that is relevant to the user.  This includes process/product ‘variability’ as used in 
Six-sigma applications.  When costs/revenues are considered directly, one of the outcomes is 
the implicit assignment of economic equivalents to variability measures.  Goals are represented 
by an objective function to be maximized or minimized, subject to constraints on inputs and 
outputs to take into account other considerations such as capacities, safety, technical and legal 
restrictions, etc. 

D.O. is one of the improvements enabled by a process being in sufficient control, as would 
happen from the application of the Six Sigma method.  In a synergistic relationship, D.O. can in 
turn help better achieve the Six Sigma objective of reduced variability, together with reduced 
costs and increased productivity. 

This tool (D.O.) will also help identify when problems arise, but this is not its main purpose.  To 
solve problems generated by special causes we revert to well established Quality Control 
technology within the Six Sigma method. 

The two first steps in applying D.O. are: 

1. Define objectives, how performance is measured; and select the control1 and uncontrolled2 
inputs that are most likely to affect performance. 

2. Test that the process is in “sufficient control”, that is, the results are reasonably reproducible.  
This is a simplified process capability study. 

Note in particular that each measure of process capability (e.g., a CP) does not have a single 
value for a process -- it depends on how the process control inputs are adjusted.  Thus, the 
latent or best process capability can be determined only after optimizing the adjustments.   

Note further that optimal adjustments depend on: 

 uncontrolled inputs: physical conditions such as raw material characteristics and 
environmental conditions; 

 economic conditions such as materials/energy costs and availability, whether in a sales or 
capacity constrained production; 

 objectives, such as specifications 

that are not necessarily static.   

By comparison, solutions using DOE/RSM, Neural Networks and models based on first 
principles are too static (and too costly).  EVOP and Simplex are more dynamic, but not as 
effective because of their rudimentary technology3. 

                                                
1
  Inputs that can be adjusted or set, frequently the targets (setpoints) for first-level control devices. 

2
  Inputs such as the characteristics of a batch of raw materials, or environmental conditions such as 

humidity. 

3
  This is stated with considerable respect and recognizing that such simple technologies yield so much 

results.  D.O.’s significant increases in reliability and performance have been obtained by developing 
and applying proportionally much more technology – but which is virtually transparent to the user. 
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B. Sequential Learning and Optimization 

A process produces product and data.  This data can be used for accounting purposes and to 
detect special causes, and also to characterize the process so as to learn how to get more 
bottom-line value from it.   

The fastest learning is when available data is used immediately.  Since production data is 
generated sequentially, to take full advantage of the data one needs sequential statistical 
methods.  Sequential modeling and optimization – each time new data becomes available -- not 
only advances getting improvements because data is used sooner, but the advanced 
awareness also leads toward avoiding risks and accelerating getting the right data – that is, 
earlier/higher process performance. 

Some of the technical characteristics of ULTRAMAX’s D.O. are: 

 Models (Y=f(X) where Y are the outputs and X the inputs4, some being adjusted and some 
uncontrolled) are based on Bayesian statistics to work better in an environment of 
insufficient data (which is useful to start improving right away) and to avoid overreaction to 
noisy data. 

 Models are locally accurate so as to focus the ability to predict accurately only in the area of 
interest, i.e., around the perceived best running conditions.  This also reduces the distortion5 
and the extra numerical efforts in modeling the process outside the areas of interest.  

 Models are quadratic polynomials6 (subsets with insufficient data), which are quite effective 
given the above approach. 

 It recognizes the local region (of combination of inputs) for which the prediction models are 
sufficiently accurate: the Area of Confidence (AOC).  Advice for adjustments for the next 
production run is given within the AOC to be reasonably assured of the results to be 
obtained with the production process7.  The AOC moves towards the optimum as models 
are updated with new sequential data that moves towards the optimum, this creating a self-
supporting synergistic effect. 

 The mechanism to provide a sequential Advice for the next adjustment of the production 
process minds maximizing/minimizing the objective function while satisfying input and output 
constraints, the AOC as mentioned above, controlling making abrupt changes, and 
maintaining the robustness of future models to be created with the new data generated. 

By ‘optimum’ in D.O. we do not mean the optimum in the region where the process has been 
operated in the past8 upon which prediction models are created, but wherever it could be 

                                                
4
  Note that here X are the process inputs, not internal process variables that explain or cause the final 

outputs.  The frame of reference is that of a Decision Input/Output Diagram, not an Engineering 
Input/Output Diagram.  In this approach, intermediate variables, that are a consequence of the inputs, 
are also dependent, results or “output” variables. 

5
  Making the realistic assumption that the correct model structure (equation) is not available. 

6 
 Taylor expansion of second order. 

7
  The tradeoff between certainty in future results – little extrapolation -- and the speed of getting to the 

optimum – more extrapolation -- can be controlled by the user, but users frequently rely on the default 
settings in the technology. 

8
  Whether during regular production and/or variations generated by DOE or any perturbations 

implemented to generate data necessary for certain Neural Networks. 
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operated9.  Sequential modeling/optimization methods enable D.O. to learn about process 
behavior as the adjustments move towards the optimum where there is no historical information.  

To implement the above technology the third stage in D.O. is: 

2. Engage in these steps of sequential cycles, all of which can happen automatically in a 
closed-loop installation integrated with DCS/SCADA10 systems, can happen stand-alone 
manually, or some mix of the two. 

 Adjust (set) the control inputs11. 

 Run the process until the output measurements are representative of the values of 
the inputs, typically ¼ hr. to 2 hrs (or the length of the batch process). 

 Collect the input and corresponding output data for the new run, and when 
applicable, the values of the uncontrolled inputs12 for the next run(s). 

 Enter the data into the computer program.  

 Generate a new Advice.  The technology updates the models with the new data 
(called Learning) and uses the new models to generate the new Advice (called 
Synthesis). 

 Especially in the first series of advices the operator or engineer decides that an 
advice is satisfactory, or if deemed necessary can modify it based on personal 
knowledge and experience.  Then he/she goes back to repeat the first step of the 
sequential cycles. 

This flow of information is illustrated in Fig. 1, and the kind of results to be obtained is illustrated 
in Fig. 2.  This procedure yields the highest payoffs when applied to repetitive operations – let 
us say, spending more than 200 hours/year producing a product. 

After a significant data base has been collected, through Engineering Analysis, it is possible to 
identify the vital inputs which are most relevant, and whether other important inputs or factors 
need to be identified to explain results. After the optimum is achieved, Engineering Analysis 
tools help understand bottlenecks to further improvements, which would lead to certain cost-
effective modifications to the process itself. 

The section below “Results from two applications” describes applications in more detail. 

                                                
9
  … as a continual improvement from where the optimization got started; i.e. climbing the “mountain” of 

performance on which the process is being run initially.  D.O., used mostly in production, does not 
attempt to perform global optimization if it happens to lie on the other side of a valley of lower 
performance.  Identifying a better mountain is better done in an R&D environment, using 
first-principles and/or specialized DOE.  Once a better “mountain” is identified, then D.O. is the 
technology to refine the new local optimum and maintain it. 

10
  Distributed Control Systems; Supervisory Control And Data Acquisition. 

11
  Control inputs remain absolutely constant until changed by the operator.  One example is the target 

value (not the actual) for a control device, more generally, the position of a knob. 

12
 Uncontrolled inputs are (basically) not affected by the control (adjusted) inputs. 



 5 

Sequential Empirical Optimization (SEO) Cycles

Advice,

Alerts

Adjusted, Decision Inputs

Uncontrolled Inputs

Ambient conditions

Process whose

operations

are to be

Optimized

Run Time

Amount of Ingredients

Cycle Times

Feed Rate, Speed

Temp, Press, Voltage

Raw material charact.

ULTRAMAX
Run Data

Outputs, Outcomes,

Consequences

Yield, Prod. Rate

Quality Characteristics

Losses, Emissions 

C

M

M

M

A

A

A

A

M

M

Process Control / Ultramax Interface

Accept/Revise

/Automate

Performance Index

Profitability

Costs, CPk, Loss Functions

A=Adjusted
M=Measured
C=Calculated

C

 
Figure 1: The Decision Input/Output Diagram.  

The specific variables are defined by the users for each application 

PERFORMANCE

RUNS, TIME

          OLD ULTRAMAX     NEW

PERFORMANCE          LEARN/ACHIEVE CYCLES                PERFORMANCE

Legend
Time averaged results

Individual results

.

 

Figure 2: A pattern of improvements obtained through sequential adjustments. 

The first 10 runs were made at constant inputs set at the baseline. 
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3. How and why D.O. has advantages 

The metrics for the performance of Adjustment Optimization technologies are based, of course, 
on the improvements to the performance of the process being optimized.  In addition one may 
include other costs incurred and benefits obtained. 

From a business point of view, the most inclusive metric of the performance of an Adjustment 
Optimization technology is the cumulative process performance since the inception of applying 
the technology, including any data gathering stage.  This metric reflects that a superior 
technology needs to increase process performance quickly, and in the long run keep it close to 
the optimum.  Recall that, as suggested above, the optimum is not necessarily a constant, but it 
depends on conditions and objectives, which may change significantly with time. ULTRAMAX’s 
D.O. was designed to maximize this metric. 

To compare various adjustment optimization technologies as applied to a target process, we 
would have them all start in the same region of process adjustments, and then track the 
cumulative performance, ideally without human intervention, for as long as desired.  This can be 
done in a scientifically reproducible way when the target process is computer-simulated, 
including the changes in the values of uncontrolled inputs and other random effects.  

Factors related the superiority of D.O.: 

 Because D.O. is based on sequential modeling and optimization it can approach the 
optimum (or optima, depending on conditions) with much less data (fewer runs) than DOEs 
or EVOP, and of course, it can maintain it as conditions change.  For the same reason it can 
do much better than Neural Networks, especially when the historical data used for training 
the NN was obtained away from the optimum (as it is usually the case).  It is more reliable 
than SIMPLEX because it is model-based, makes more use of past data, and can address 
explicitly uncontrolled inputs. 

 It is much less costly than alternate methods that would require taking the process out of 
production to generate data, with the consequent consumption of labor and materials and 
losses in sales.   

 It is simpler because it requires much less statistical knowledge.  In some respects, it 
requires none, as it is evident when running in a closed-looped mode.  However people will 
continue to need statistical, engineering and business knowledge -- such as what 
black-belts and engineers have – for when D.O. detects “alert” conditions that require 
analysis to evaluate and resolve. 

 The Game Plan (Optimization Focus) can be improved by the black belts, engineers and 
managers as new awareness about requirements and/or about the process is acquired 
while doing optimization. 
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Results from two applications 

1. Vane Grinding Operation 

Business Situation 

GE Aircraft Engines (GEAE) in Cincinnati, OH, in 1989, was faced with a capacity-constrained 
production situation for a particular high-volume aircraft engine.  

A key constraint to production was the availability of a turbine vane. 

The Process 

A potential bottleneck process was identified as the grinding of the original cast to generate the 
forward inner and outer bands.  This process was deemed critical because it is the reference 
surface for future machining, which produced over 20% rejects.   

The process was creep-feed grinding, which removes large amounts of stock in one pass and 
leaves a high quality surface. 

Objectives/Outputs 

The translation of the general business objectives into specific measurable objectives/outputs 
were: 

1. Achieve minimal deviations from targets for measures at four locations and calculated taper 
and flatness13.  The relevant data was the average and standard deviation of 24 vanes 

ground with the same setting of the control inputs, the raw data obtained with an automatic 
digital measurement device. 

2. Increase the gross production rate.  Production rate was affected by the fact that creep-feed 

grinding wheels were consumed in about two hours of operation, and it took some 50 
minutes to replace and set them.  Gross production rate was calculated measuring the 
instantaneous production rate, the consumption rate of the grinding wheel, and taking into 
account the wheel changeover time. 

3. All this data was supplied to ULTRAMAX, which through certain parameters provided by the 
users, was translated to “performance loss functions” to be minimized while the process ran 
within constraints. 

Other outcomes from running the process were considered relatively unimportant, including the 
possible increase in the grinding wheel usage cost. 

Inputs 

The engineers and operators selected, based on their own knowledge and experience, the 
following inputs (from the 40 or so in the control panel): 

 Four control (decision) inputs that were most likely to provide improvements if adjusted 
better: Dress rate, Feed rate, Feed Length, Wheel speed. 

 One uncontrolled input that might explain other variations in results: Wheel radius. 

All other adjustable control inputs were kept constant at their best known values, and other 
uncontrolled inputs, such as wheel hardness, were ignored for the time being. 

                                                
13

  Note the not-so-subtle difference from the traditional criterion that a part was “good” if it was within 
specifications, thus ignoring that when within specifications there can be significant different levels of 
quality with their consequent effects on profits.  The new objectives were in spirit similar to 
maximizing CPK, except that there were seven CPKs to maximize.  The balancing among the seven 
variabilities was done by using Ultramax’s “Performance Loss Functions”. 
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Results from Dynamic Optimization 

Plots of the most important variables from 27 sequential readjustment cycles are presented in 
Fig. 3.  Each adjustment was run for about 45 minutes to grind 24 vanes – namely, about 20 
hours of optimization work spanning two weeks.14  The net results were: 

 Variation from target was reduced by 33%, resulting eventually in a 75% reduction of scrap 
due to future machining. 

 Production rate was increased 7% -- concurrently and in addition to the throughput 
increases due to scrap reduction.  

These results were obtained largely by these re-adjustments: 

 reducing the dressing rate of the grinding wheel – and thus almost doubling the life of each 
grinding wheel, 

 maintaining and improving quality (and reducing instantaneous production rate) by reducing 
the feed rate.   

Bottom Line 

In two weeks removed a bottleneck to deliver engines. 

The scrap reduction saved about $250 K/year. 

The process was always capable of these results; all that was needed was a means to adjust 
the process better. 

                                                
14

  For more details see Bhateja and Moreno (1989) 
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Vane Creep-Feed Grinding 

 

 

 

Fig. 3: Sequential data in the optimization of Vane creep-feed grinding 
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2. Combustion Optimization of an Electric Power Generating Boiler 

Business Situation 

The Illinois Power Co. in 1996 was faced with two challenges: 

1. Bringing their operations into compliance with the 1990 Clean Air Act Amendment at the 
lowest possible capital investment. 

2. Be a least-cost provider of electricity in order to meet the challenges of a developing 
competitive market. 

The Process 

This situation applied to the 235 MW Hennepin Power Station’s Unit 2, with a Coal Tangentially 
Fired Boiler from Combustion Engineering (ABB) with a Westinghouse WDPF distributed control 
system (DCS).   

The most difficult demand of the 1990 Clean Air Act is the control of Nitrogen Oxides (NOx).  
The traditional solution is to replace the burners with Low NOx burners, involving a capital 
investment exceeding $9 million. 

Naturally, before engaging in such expense, the managers searched for a less costly alternative 
that would fully utilize the true, latent capability of the current equipment.  They chose to use 
D.O. to optimize the boiler combustion performance. 

D.O. was started manually (in a stand-alone mode) to get an early understanding of the possible 
improvements and savings through optimal process adjustments.  Eventually it was integrated 
with the DCS to automate data transmission and thus facilitate maintaining optimal running 
conditions15. 

Objectives/Outputs 

The translation of the general business objectives into specific measurable objectives/outputs -- 
the Game Plan or Optimization Focus -- for optimizing the combustion at full load (235 MW) 
was: 

1. NOx emission (measured by continuous in-situ instruments in the stack) was originally to be 
minimized; and when it became clear that regulations could be satisfied, changed just to be 
lower than a management-specified upper constraint. 

2. Boiler Efficiency (a calculated value based on various measures), to be maximized. 

3. Steam temperatures, to be within constraints to maintain the integrity of the turbine. 

4. Stoichiometric O2, to be within constraints as dictated by past practices to maintain 
efficiency.  Since efficiency already was to be maximized, these constraints were not truly 
necessary, but culturally needed for the peace-of-mind of engineers in a start-up 
environment.   

5. A quasi-economic objective function was created to balance the total benefits of the multiple 
maximization objectives. 

Inputs 

The engineers and operators selected, based on their own knowledge and experience, the 
following control (decision) inputs – that were most likely to provide improvements if adjusted 
better -- from the many adjustable inputs which were available to them: 

1. Oxygen (O2) trim, a bias correction to a theoretical curve to indicate the target excess 
combustion O2 measured at the stack, which determines through first-level controllers the 

                                                
15

  For more details see Krueger and Patterson (1997). 
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amount of air delivered for the combustion for the coal necessary to deliver the desired load 
(MW). 

2. Nine sets of dampers to distribute secondary/auxiliary air, each set adjusted with the same 
values.   

Burner tilts, another set of possible control (decision) inputs were kept constant in the data 
shown here.  All other adjustable control inputs were kept constant at their best-known values.  
Uncontrolled inputs, such as coal characteristics and atmospheric conditions were ignored, thus 
contributing to unexplained variations in outputs, what is called “noise”. 

Future Game Plan formulations may refine the optimum by also including these variables. 

The amount of coal used, controlled by the targeted load through first level control systems, was 
a “ruled input” used only to calculate efficiency. 

While technically there are no limits as to how many inputs the D.O. technology can handle, for 
the sake of orderly optimization in a controlled environment it is seldom desirable to get started 
with more than a dozen or so inputs.  The inputs can be expanded (and contracted) as we learn 
more about the process. 

Results from Dynamic Optimization 

The values of the two main outputs, NOx and Boiler Efficiency, for 106 sequential re-
adjustments every hour or so, are displayed in Fig. 4. 

In about 110 hours of operations, without requiring initial process data or process models, the 
NOx was reduced from about 0.58 lb/BTU to about 0.45 lb/BTU, and simultaneously efficiency 
was increased from about 89% to 92%. 

The stoichiometric O2 to maintain boiler efficiency was well within the traditional constraints, 
and thus was consistent with conventional awareness. 

The turbine safety temperatures were also generally within constraints and consistent with 
conventional awareness, but a few runs did go beyond constraints, and D.O. corrected this in 
the near future. 

These results were achieved largely by reducing the excess O2 from about 3% to 2%; and by 
increasing the air distribution to the top burners, increasing less the air distribution to the lower 
burners, and reducing (making lean) the air in the middle burners. 

Bottom Line 

All these results satisfied the Clean Air Act legislation, and avoided $9.4 million in capital 
expenditures for low-NOx burners.   

The improved efficiency resulted in fuel savings in the order of $300 K/year. 

The process was always capable of these results; all that was needed was a means to adjust 
the process better. 

Illinois Power has installed Ultramax’s D.O. in all of their fossil-fired generating units.  
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